Random Perturbation of the Variable Metric Method for Unconstrained Nonsmooth Nonconvex Optimization
نویسندگان
چکیده
We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random perturbations. Convergence to a global minimum is established and a simple method for the generation of suitable perturbations is introduced. An algorithm is proposed and numerical results are presented, showing that the method is computationally effective and stable.
منابع مشابه
Random perturbation of the projected variable metric method for nonsmooth nonconvex optimization problems with linear constraints
We present a random perturbation of the projected variable metric method for solving linearly constrained nonsmooth (i.e., nondifferentiable) nonconvex optimization problems, and we establish the convergence to a global minimum for a locally Lipschitz continuous objective function which may be nondifferentiable on a countable set of points. Numerical results show the effectiveness of the propos...
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملLimited memory interior point bundle method for large inequality constrained nonsmooth minimization
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable met...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملH ∞ Synthesis via a Nonsmooth, Nonconvex Optimization Approach
A numerical method for solving the H∞ synthesis problem is presented. The problem is posed as an unconstrained, nonsmooth, nonconvex minimization problem. The optimization variables consist solely of the entries of the output feedback matrix. No additional variables, such as Lyapunov variables, need to be introduced. The main part of the optimization procedure uses a line search mechanism where...
متن کامل